半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于多异学习器融合Stacking集成学习的窃电检测
作者:
作者单位:

三峡大学电气与新能源学院,湖北省宜昌市 443002

摘要:

针对窃电检测中用户用电数据类别不平衡、采用投票法作为结合策略的集成学习方法无法充分发挥多个不同学习器优势等问题,提出一种利用Stacking集成学习融合多异学习器的模型应用于窃电检测。首先,从影响电量计量的因素出发,根据常见的5种窃电方法模拟6种窃电行为模式;其次,采用合成少数类过采样技术(SMOTE)对不平衡的用电数据进行处理,并利用K折交叉验证法对平衡后的训练集进行划分以缓解因重复学习造成的过拟合;然后,使用评价指标和多样性度量优选模型的不同初级学习器和元学习器,构建融合不同学习器优势和差异的Stacking集成学习窃电检测模型;最后,算例对比分析结果表明所提窃电检测模型能有效解决用电数据类别不平衡,充分发挥不同学习器的优势,评价指标良好。

关键词:

基金项目:

国家自然科学基金资助项目(51607104)。

通信作者:

作者简介:

游文霞(1978—),女,博士,副教授,主要研究方向:机器学习在电力系统中的应用。E-mail:youwenxia@ctgu.edu.cn
李清清(1996—),女,通信作者,硕士研究生,主要研究方向:人工智能在电力系统中的应用。E-mail:516378642@qq.com
杨楠(1987—),男,博士,副教授,主要研究方向:电力系统运行与控制、电力系统规划。E-mail:ynyyayy@ctgu.edu.cn


Electricity Theft Detection Based on Multiple Different Learner Fusion by Stacking Ensemble Learning
Author:
Affiliation:

School of Electrical and New Energy, China Three Gorges University, Yichang 443002, China

Abstract:

Aiming at the problems that the consumer power consumption data categories are unbalanced for electricity theft detection, and the ensemble learning method using voting as a combination strategy cannot give full play to the advantages of multiple different learners, a model using Stacking ensemble learning to fuse multiple different learners is proposed and applied to electricity theft detection. First, starting from the factors affecting electricity metering, six electricity theft behavior modes are simulated according to five common electricity theft methods. Secondly, synthetic minority oversampling technique (SMOTE) is used to process the unbalanced power consumption data, and K-fold cross-validation method is used to divide the balanced training sets to alleviate the overfitting caused by repeated learning. Then, the evaluation indicators and diversity metrics are employed to optimize different primary learners and meta-learners of the model, and a Stacking ensemble learning electricity theft detection model integrating the advantages and differences of different learners is constructed. Finally, the comparative analysis results of examples show that the proposed electricity theft detection model can effectively solve the imbalance of power consumption data categories, give full play to the advantages of different learners, and the evaluation index is good.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. 51607104).
引用本文
[1]游文霞,李清清,杨楠,等.基于多异学习器融合Stacking集成学习的窃电检测[J].电力系统自动化,2022,46(24):178-186. DOI:10.7500/AEPS20210731001.
YOU Wenxia, LI Qingqing, YANG Nan, et al. Electricity Theft Detection Based on Multiple Different Learner Fusion by Stacking Ensemble Learning[J]. Automation of Electric Power Systems, 2022, 46(24):178-186. DOI:10.7500/AEPS20210731001.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2021-07-31
  • 最后修改日期:2022-01-22
  • 录用日期:2022-01-24
  • 在线发布日期: 2022-12-19
  • 出版日期: