1.华南理工大学电力学院,广东省广州市 510640;2.华南理工大学自动化科学与工程学院,广东省广州市 510640
目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积神经网络和门控循环单元,从空间、特征和时间维度提取有效特征,连接全连接层输出结果。最后,基于美国新英格兰地区的真实电力负荷数据进行仿真验证,并提取模型注意力权重,分析元胞之间的空间依赖性。结果表明,所提模型相比传统模型在不同预测步长上均具有更高的预测精度和稳定性,有效挖掘了区域级负荷的空间依赖性。
国家自然科学基金资助项目(62173148);广东省基础与应用基础研究基金资助项目(2023A1515010184)。
赵紫昱(1999—),男,硕士研究生,主要研究方向:电力负荷预测、新能源功率预测、人工智能。E-mail:202121015744@mail.scut.edu.cn
陈渊睿(1969—),男,博士,副教授,硕士生导师,主要研究方向:电力电子系统先进控制技术、新能源发电并网与控制技术。E-mail:yrchen@scut.edu.cn
陈霆威(1999—),男,硕士研究生,主要研究方向:电网优化调度及能量管理。E-mail:1838063537@qq.com
曾君(1979—),女,通信作者,博士,教授,博士生导师,主要研究方向:微电网能量管理及优化、可再生能源发电系统中的电力电子及控制技术。E-mail:junzeng@scut.edu.cn
1.School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China;2.School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, China
At present, the research on spatial load forecasting lacks the consideration of complex spatial-temporal relationship. Therefore, a regional ultra-short-term spatio-temporal load forecasting model considering multi-dimensional and multi-source features is proposed in this paper. Firstly, based on the existing regional-level load, cell partitioning is carried out to construct a graph topology that considers cell correlation. Secondly, effective features are extracted from the spatial, feature, and temporal dimensions through the graph attention network, one dimensional convolutional network and gated recurrent unit, connecting the fully connected layers to output the results. Finally, simulation validation is conducted based on the real power load data from the New England region of the United States, and model attention weights are extracted to analyze the spatial dependencies between cells. The results show that, compared with the traditional models, the proposed model provides higher accuracy and stability with different prediction steps, effectively exploiting the spatial dependence of regional spatial load.
[1] | 赵紫昱,陈渊睿,陈霆威,等.基于时空图注意力网络的超短期区域负荷预测[J].电力系统自动化,2024,48(12):147-155. DOI:10.7500/AEPS20230914003. ZHAO Ziyu, CHEN Yuanrui, CHEN Tingwei, et al. Ultra-short-term Regional Load Forecasting Based on Spatio-Temporal Graph Attention Network[J]. Automation of Electric Power Systems, 2024, 48(12):147-155. DOI:10.7500/AEPS20230914003. |