1.江苏大学电气信息工程学院;2.东南大学电气工程学院;3.国网江苏省电力有限公司南京供电分公司;4.国网智能电网研究院有限公司;5.香港理工大学工程学院
随着配电网规模的快速增长及分布式资源的高度渗透,配电网拓扑结构日益复杂,给配电网故障定位分析带来极大挑战。矩阵算法和智能优化算法应用于故障定位时需要根据变化的拓扑信息构造网络矩阵或建立寻优模型,极大增加了计算量和计算复杂度,数据处理和计算效率低下。为此,本文首先构建了配电网拓扑的图数据模型,通过图投影技术从全景电网图中抽取适配故障溯源任务场景的优化子图,在此基础上,采用Yen最短路径搜索算法,查找电源至异常节点的潜在故障路径,通过遍历线路节点判断电流越限信息确定故障源所在区段,解决了电网拓扑的精确表征和快速搜索问题,实现了面向大规模复杂配电网的故障源快速精准定位,在保证故障溯源准确性的基础上,极大提升了故障搜索效率。
国家自然科学基金资助项目(52177076); 国家重点研发计划项目(2022YFB2404200)。
With the rapid growth of the distribution network and the high penetration of distributed resources, the topology of distribution networks has become increasingly complex, posing significant challenges to fault location analysis. When applying matrix algorithms and intelligent optimization algorithms to fault location, it is necessary to construct network matrices or establish optimization models based on changing topology information. This greatly increases the computational burden and complexity, leading to low efficiency in data processing and computation. Therefore, this paper first constructs a graph data model for the distribution network topology. Utilizing graph projection techniques, it extracts optimized subgraphs tailored for fault tracing scenarios from the panoramic power grid graph. On this basis, the Yen"s shortest path search algorithm is employed to find potential fault paths from the power source to the abnormal nodes. By traversing the line nodes and assessing their overcurrent information, the fault section is identified, thereby resolving the issues of accurate representation and rapid search of the power grid topology. This enables quick and precise fault localization in large-scale complex distribution networks, greatly enhancing fault search efficiency while ensuring the accuracy of fault tracing.
[1] | 张煜佳,袁野,周苏洋,等.基于动态图投影的大规模复杂配电网故障快速溯源方法[J/OL].电力系统自动化,http://doi. org/10.7500/AEPS20240112003. Zhang Yujia, YUAN Ye, ZHOU Suyang, et al. A Rapid Fault Tracing Method for Large-Scale Complex Distribution Networks Based on Dynamic Graph ProjectionZHANG Yujia1, YUAN Ye1, ZHOU Suyang2, ZHU Hong3, ZHOU Aihua3, CHEN Qingquan4[J/OL]. Automation of Electric Power Systems, http://doi. org/10.7500/AEPS20240112003. |