半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于时序二维变换和多尺度Transformer的电能质量扰动分类方法
作者:
作者单位:

1.智能电网教育部重点实验室(天津大学),天津市 300072;2.天津市电力系统仿真控制重点实验室(天津大学),天津市 300072;3.国网智能电网研究院有限公司,北京市 102209

摘要:

随着新能源渗透率的不断提高,电网面临的电能质量扰动(PQD)问题变得更加复杂,基于一维PQD信号的传统分类方法难以同时提取并辨识周期性与趋势性扰动。针对此问题,提出了一种基于时序二维变换和多尺度Transformer的PQD分类方法。首先,利用时序二维变换将一维PQD时间序列转换为一组基于多个周期的二维张量,以实现在二维空间中深入挖掘PQD信号中所包含的特征信息。然后,通过多尺度Transformer编码器模块提取PQD信号的多尺度特征图,利用多尺度Transformer解码器模块对多尺度特征图进行拼接和特征融合,有效合并在不同尺度上提取的特征图。最后,通过全连接层和Softmax分类器完成PQD分类任务。为验证所提方法的有效性,建立了含24种PQD的数据集对模型进行测试,结果表明所提方法对PQD信号具有较高的分类准确率和噪声鲁棒性。

关键词:

基金项目:

国家重点研发计划资助项目(2023YFB2407500)。

通信作者:

作者简介:


Power Quality Disturbance Classification Method Based on Time-series Two-dimensional Transformation and Multi-scale Transformer
Author:
Affiliation:

Abstract:

With the increasing penetration of renewable energy, the power quality disturbance (PQD) problem faced by the power grid has become more complicated. The traditional classification method based on one-dimensional PQD signals makes it difficult to extract and identify periodic and trend disturbances at the same time. To address this problem, this paper proposes a PQD classification method based on time-series two-dimensional transformation and multi-scale Transformer. Firstly, the time-series two-dimensional transformation is used to convert the one-dimensional PQD time series into a set of two-dimensional tensors based on multiple periods, to deeply mine the characteristic information contained in the PQD signals in the two-dimensional space. Then, the multi-scale feature map of the PQD signal is extracted through the multi-scale Transformer encoder module. And the multi-scale Transformer decoder module is used to splice and fuse the multi-scale feature maps, for effectively merging the feature maps extracted at different scales. Finally, the PQD classification task is accomplished through a fully connected layer and a Softmax classifier. To verify the effectiveness of the proposed method, a dataset containing 24 kinds of PQD is established to test the model. The results indicate that the proposed method has a high classification accuracy and noise robustness for PQD signals.

Keywords:

Foundation:
This work is supported by National Key R&D Program of China (No. 2023YFB2407500).
引用本文
[1]王守相,李慧强,赵倩宇,等.基于时序二维变换和多尺度Transformer的电能质量扰动分类方法[J/OL].电力系统自动化,http://doi. org/10.7500/AEPS20240412005.
WANG shouxiang, LI Huiqiang, ZHAO Qianyu, et al. Power Quality Disturbance Classification Method Based on Time-series Two-dimensional Transformation and Multi-scale Transformer[J/OL]. Automation of Electric Power Systems, http://doi. org/10.7500/AEPS20240412005.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2024-04-12
  • 最后修改日期:2025-03-06
  • 录用日期:2024-10-31
  • 在线发布日期: 2025-03-13
  • 出版日期: