1.电力传输与功率变换控制教育部重点实验室(上海交通大学),上海市 200240;2.上海非碳基能源转换与利用研究院,上海市 200240;3.中国电力科学研究院有限公司(南京),江苏省南京市 210003;4.国家电网有限公司华东分部,上海市 200120
光储电站运行包含光伏功率预测与资源优化调度两部分,通常首先以预测精度最高为目标进行光伏功率预测,再基于预测曲线进行光储电站优化调度。然而,优化调度问题的目标函数值与光伏功率预测误差具有非线性、非对称关系,在相同的预测误差水平下,以精度最高为目标的光伏功率预测结果并不一定使得光储电站运行收益最大。对此,提出了面向光储电站运行收益提升的光伏功率价值导向预测方法。首先,构建包含光伏功率预测与电站运行的双层优化问题,上层为光伏功率日前预测模型训练问题,下层为给定光伏功率预测模型下的光储电站日前投标与日内运行两阶段优化调度问题。然后,将上层预测问题变换为组合预测形式,预测模型参数设置为权重系数,设计了基于迭代优化的预测模型参数求解方法。最后,采用实际光伏电站数据以及电价数据进行算例分析,并与以预测精度最高为目标的光伏功率预测方法进行对比,验证所提出方法在提升电站运行收益方面的有效性。
国家电网有限公司科技项目(4000-202355095A-1-1-ZN)。
许多(2000—),女,硕士研究生,主要研究方向:光伏功率预测。E-mail:xdd0816@sjtu.edu.cn
徐潇源(1989—),男,通信作者,副教授,主要研究方向:电力系统不确定性分析、电力系统优化运行。E-mail:xuxiaoyuan@sjtu.edu.cn
秦放(1991—),女,博士,主要研究方向:新能源资源评估及卫星遥感应用。E-mail:qinfang@epri.sgcc.com.cn
1.Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education (Shanghai Jiao Tong University), Shanghai 200240, China;2.Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China;3.China Electric Power Research Institute (Nanjing), Nanjing 210003, China;4.East China Branch of State Grid Corporation of China, Shanghai 200120, China
The operation of photovoltaic-energy storage plants includes two parts: photovoltaic power forecasting and resource optimal scheduling. The photovoltaic power forecasting is usually carried out first with the goal of the highest forecasting accuracy, and then the optimal scheduling of the photovoltaic-energy storage plant is carried out based on the forecasting curve. However, there is a nonlinear and asymmetric relationship between the objective function value of optimal scheduling problem and the photovoltaic power forecasting error. At the approximate forecasting error level, the photovoltaic power forecasting result aiming at the highest accuracy does not necessarily lead to the maximum operation revenue of the photovoltaic-energy storage plant. In this regard, a value-oriented photovoltaic power forecasting method for improving the operation revenue of photovoltaic-energy storage plants is proposed. Firstly, a bi-level optimization problem is constructed, which includes photovoltaic power forecasting and power plant operation. The upper layer is the training problem of the day-ahead photovoltaic power forecasting model, and the lower layer is the two-stage optimal scheduling problem of day-ahead bidding and intra-day operation for the photovoltaic-energy storage plant under the conditions of given photovoltaic power forecasting model. Then, the upper forecasting problem is transformed into a combined forecasting form, and the forecasting model parameters are set as weight coefficients. A parameter solving method for the forecasting model based on iterative optimization is designed. Finally, using actual photovoltaic power plant data and electricity price data for case analysis, and compared with the photovoltaic power forecasting method that aims to achieve the highest forecasting accuracy, the effectiveness of the proposed method in improving the operation income of power plants is verified.
[1] | 许多,徐潇源,秦放,等.面向光储电站运行收益提升的光伏功率价值导向预测方法[J].电力系统自动化,2025,49(4):152-164. DOI:10.7500/AEPS20240529001. XU Duo, XU Xiaoyuan, QIN Fang, et al. Value-oriented Photovoltaic Power Forecasting Method for Operation Revenue Improvement of Photovoltaic-Energy Storage Plants[J]. Automation of Electric Power Systems, 2025, 49(4):152-164. DOI:10.7500/AEPS20240529001. |