1.新型电力系统运行与控制全国重点实验室(清华大学),北京市 100084;2.清华四川能源互联网研究院,四川省成都市 610042;3.广东电网有限责任公司广州供电局电力科学研究院(氢能源研究中心),广东省广州市 510335;4.北京清能互联科技有限公司,北京市 100084;5.智慧城市物联网国家重点实验室(澳门大学),澳门 999078;6.福州大学化肥催化剂国家工程研究中心,福州大学化工学院,福建省福州市 350116
利用风光新能源,寻找中国沿海受端电力系统较低成本的减碳路径,是中国“碳达峰?碳中和”目标实现的核心挑战之一。通过分析氢氨储能与现有储能类型(如电化学、压缩空气等)的技术经济差异,建立了时序减碳约束下含耦合火电掺烧的氢氨储能的电力系统多年拓展规划模型,并探讨其在电力系统中实现较低成本减碳的技术经济可行性。算例选取广东电网实际数据进行研究。结果表明,在日益严格的碳减排约束下,需要逐步通过新增风光储、“以气代煤”的火电规划模式、新增氢氨储能(包含气电掺氢、煤电掺氨和氨分解等方式)等技术路径实现减碳目标。对比仅通过锂电池调峰的减碳模式,通过引入耦合火电掺烧的氢氨储能技术,可以避免超配大量的风光储容量,显著降低了风光弃电率。这不仅实现了资源的集约利用,而且通过复用存量火电基础设施,进一步降低了氢氨储能减碳成本。因此,利用氢氨储能技术进行电力系统减碳是一条可规模化且较为经济可行的减碳路径。
国家重点研发计划资助项目(2021YFB4000500,2021YFB4000400)。
1.National Key Laboratory of New Power System Operation and Control (Tsinghua University), Beijing100084, China;2.Tsinghua Sichuan Energy Internet Research Institute, Chengdu610042, China;3.Hydrogen Energy Research Center of Electric Power Research Institute of Guangzhou Power Supply Bureau of Guangdong Power Grid Co., Ltd., Guangzhou510335, China;4.Beijing Tsintergy Technology Co., Ltd., Beijing100084, China;5.State Key Laboratory of Internet of Things for Smart City (University of Macau), Macau999078, China;6.National Engineering Research Center of Chemical Fertilizer Catalyst (School of Chemical Engineering, Fuzhou University), Fuzhou350116, China
Utilizing renewable energy sources such as wind and photovoltaic to identify cost-effective decarbonization pathways for coastal receiving-end power systems in China is one of the core challenges in achieving the goals of “carbon emission peak and carbon neutrality” of China. By analyzing the techno-economic differences between hydrogen-ammonia storage and existing energy storage technologies (such as electrochemical and compressed air storage), a multi-year expansion planning model for power systems incorporating coupled co-firing hydrogen-ammonia storage under temporal decarbonization constraints is established, and the techno-economic feasibility of achieving low-cost decarbonization within the power system is explored. The case selects actual data from Guangdong power grid for research. The results demonstrate that under increasingly stringent carbon reduction constraints, it is necessary to progressively achieve decarbonization targets through technical pathways, such as the newly added wind and photovoltaic storage, the transition from coal to gas in thermal power planning modes, and the newly added hydrogen-ammonia storage (including hydrogen co-firing in gas turbines, ammonia co-firing in coal-fired plants, and ammonia decomposition). Compared to a decarbonization mode relying solely on lithium-ion battery peak shaving, the introduction of coupled co-firing hydrogen-ammonia storage technology can avoid overloading excessive wind and photovoltaic storage capacity, thus significantly reducing the wind and photovoltaic curtailment rates. This approach not only achieves intensive resource utilization but also further reduces the decarbonization cost of hydrogen-ammonia storage through the reuse of existing thermal power infrastructure. Therefore, the use of hydrogen-ammonia storage technology for power system decarbonization presents a scalable and economically feasible decarbonization pathway.
[1] | 余志鹏,林今,雷金勇,等.考虑火电掺氢氨燃烧发电的受端电力系统多阶段减碳规划[J/OL].电力系统自动化,http://doi. org/10.7500/AEPS20240910004. YU Zhipeng, LIN Jin, LEI Jinyong, et al. Multi-stage Decarbonization Planning for Receiving-end Power Systems Considering Hydrogen-Ammonia Co-firing Power Generation[J/OL]. Automation of Electric Power Systems, http://doi. org/10.7500/AEPS20240910004. |