半月刊

ISSN 1000-1026

CN 32-1180/TP

+高级检索 English
基于融合经验安全强化学习的配电网电压控制
作者:
作者单位:

1.浙江工业大学信息工程学院,浙江省杭州市 310023;2.浙江大学电气工程学院,浙江省杭州市 310007

摘要:

随着分布式可再生能源在配电网中的渗透率逐渐提高,分布式并网逆变器参与电压-无功控制对提升电力系统运行的安全性和经济性具有重要意义。然而,在基于强化学习的电压-无功控制模型中,安全运行约束难以建模,且无法确保控制策略满足运行约束。针对上述问题,文中提出一种基于安全强化学习的配电网电压控制策略。首先,将带约束的电压控制问题建模为约束马尔可夫决策过程。然后,采用原始-对偶方法学习最优策略,确保控制策略满足系统运行约束。随后,引入增强经验融合方法来改进强化学习经验利用方式,从而提高算法样本效率。最后,通过配电系统算例验证了所提方法的有效性。

关键词:

基金项目:

国家自然科学基金资助项目(52107129,U22B20116),浙江省自然科学基金资助项目(LQ22E070007)。

通信作者:

作者简介:


Volt-VAR Control for Distribution Network Based on Safe Reinforcement Learning with Mixed Experiences
Author:
Affiliation:

Abstract:

With the growing integration of distributed renewable energy sources into the distribution network, the participation of distributed grid-connected inverters in volt-VAR control (VVC) is of great significance to improve the safety and economy of power system operation. However, the safety operation constraints are difficult to model in the VVC control model based on reinforcement learning, and it is not possible to ensure that the control strategy satisfies the operation constraints. To address the above problems, this paper proposes a voltage control strategy for distribution networks based on the safe reinforcement learning. Firstly, the voltage control problem with constraints is modeled as a constrained Markov decision process. Then, a primal-dual approach is used to learn the optimization policy to ensure that the control policy satisfies the system operation constraints. Furthermore, an enhanced experience fusion method is introduced to improve the utilization of reinforcement learning experience, so as to improve the sample efficiency of the algorithm. Finally, the effectiveness of the proposed method is verified by the distribution system example.

Keywords:

Foundation:
This work is supported by National Natural Science Foundation of China (No. 52107129, No. U22B20116) and Zhejiang Provincial Natural Science Foundation of China (No. LQ22E070007).
引用本文
[1]冯昌森,汤飞霞,王国烽,等.基于融合经验安全强化学习的配电网电压控制[J/OL].电力系统自动化,http://doi. org/10.7500/AEPS20240919003.
FENG Changsen, TANG Feixia, WANG Guofeng, et al. Volt-VAR Control for Distribution Network Based on Safe Reinforcement Learning with Mixed Experiences[J/OL]. Automation of Electric Power Systems, http://doi. org/10.7500/AEPS20240919003.
复制
支撑数据及附录
分享
历史
  • 收稿日期:2024-09-19
  • 最后修改日期:2025-02-24
  • 录用日期:2024-12-12
  • 在线发布日期: 2025-03-12
  • 出版日期: